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Cobalt Solutions, LLC. recently released Cobalt version V9.2.  This version, as well 

as versions V9.0 and V9.1, makes third- and fourth-order spatial accuracies 

available to users.  One of the primary verification cases used in the development 

of version V9.2 is the widely-known advecting vortex case; Pulliam [1] being one 

of many possible references.  Results for this verification case are presented 

below. 

 

Verification Case Description 

 

A popular test case is used to assess the nominal order-of-accuracy of the 

reconstruction methods in Cobalt V9.2: an isentropic advecting vortex [1].  The 

non-dimensional initial conditions, using the non-dimensionalizations in Cobalt 

V9.2, for the vortex super-imposed on a uniform background flow are: 
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where 𝜌∞ = 1.0; 𝑝∞ = 1.0
𝛾⁄ ; 𝑢∞ = 0.5; 𝑣∞ = 0.0; 𝑇∞ = 1.0

𝛾⁄ ;  𝛾 = 1.4, 𝑉𝑠 =

5.0, and 𝐺𝑠 = 0.5.  The terms 𝑉𝑠 and 𝐺𝑠 are the vortex strength and Gaussian 

width scale, respectively,  and the vortex is initially centered at (𝑥0, 𝑦0).   

 

Reconstruction Tests 

 

For the reconstruction tests, the domain is a square of size 10.0 units by 10.0 units 

discretized by 10, 20, 40, 80, and 160 quadrilateral (square) cells in each direction, 

with the edge lengths of each cell being thus 1.0, 0.5, 0.25, 0.125, and 0.0625, 

respectively.  The vortex center (𝑥0, 𝑦0) = (5.0,5.0); the initial cell-averaged values 

are computed using p=6 Gaussian quadrature.  Data at the quadrature points of 

every edge are found by reconstruction and differences between the 

reconstructed data and the analytical values are recorded.  Figure 1 plots the 𝐿2 

norm of the reconstruction error of 𝑢, the x-component of velocity.  The 𝐿∞ norm 

shows essentially the same behavior and is not plotted for clarity.  Error norms for 

other variables also show the same behavior and are not shown. 



 

Figure 1.  L2 Norm of Reconstruction Error, Quadrilateral Cells 

 

Results over equilateral triangular grids with the same edge lengths as the 

quadrilateral grids are shown in Figure 2.  Note that, due to the domains being 

tessellated with triangles, the domains are now nominally 10 by 10 units. 

Square cells with edge length 𝐿 have an area of 𝐿2 and the distance between 

adjacent cell centroids is 𝐿.  Equilateral cells with edge length 𝐿, on the other 

hand, have an area of (
√3

4
) 𝐿2 ≅ 0.433𝐿2 and the distance between adjacent cell 

centroids is 
𝐿

√3
≅ 0.577𝐿 .  Therefore, when comparing results between 

equilateral grids and quadrilateral grids with equal edge lengths, the equilateral 

grids will behave with higher resolution in cell-centered, finite volume methods, 

such as Cobalt V9.2.  This is observed in the following results. 



 

Figure 2.  L2 Norm of Reconstruction Error, Triangular Cells 

 

Orders of reconstruction accuracy are tabulated below: 

Method Quadrilateral Cells Triangular Cells 

Second Order 2.181 2.119 

Third Order 3.376 - 3.070 3.020 

Fourth Order 3.928 3.890 

Table 1. Reconstruction Order 

 

Note that while the slope of the k=2 reconstruction on quadrilateral cells is 3.376 

over the entire range of grid spacing, it is 3.070 with the coarsest spacing omitted.   

On a related note, a test polynomial data variation of the form: 



𝑃(𝑥, 𝑦, 𝑧) =  𝛼1𝑥 + 𝛼2𝑦 + 𝛼3𝑧 + 𝛼4𝑥2 + 𝛼5𝑦2 + 𝛼6𝑧2 + 𝛼7𝑥𝑦 + 𝛼8𝑦𝑧 + 𝛼9𝑧𝑥

+ 𝛼10𝑥3 + 𝛼11𝑦3 + 𝛼12𝑧3 + 𝛼13𝑥2𝑦 + 𝛼14𝑥𝑦2 + 𝛼15𝑦2𝑧 + 𝛼16𝑦𝑧2

+ 𝛼17𝑧2𝑥 + 𝛼18𝑧𝑥2 + 𝛼19𝑥𝑦𝑧 

was used to verify k-exactness of the reconstructions on a wide variety of grids in 

addition to this one specific case.  Linear, quadratic, and cubic variations in two 

and three dimensions are selected by suitable choice of the various 𝛼𝑖 constants.  

Cell-averaged values of the test polynomial were computed and reconstructions 

based on these cell-average values were then performed.   The 𝐿∞norms of the 

differences between the reconstructed values and test polynomial values, for all 

derivatives from orders zero through k, at every face Gauss quadrature point in 

the given grid were computed.  These tests were performed over many grids 

ranging from simple two-dimensional grids to Overset grids and complex ‘real 

world’ three-dimensional grids. The 𝐿∞norm of the error for any derivative of 

order zero through k≤3 was never more than round-off for every grid investigated. 

 

Advection Tests 

 

This case was next simulated with Cobalt V9.2 on the above quadrilateral and 

triangular grids with one modification.  For two reasons, the grids are now 70.0 

units long in the x-direction and 20.0 units high in the y-direction.  First, when the 

grid is 10.0 units high in the y-direction, the vortex on the coarsest grids, with 

edge length of 1.0, will smear enough to begin interacting with the upper and 

lower boundaries, contaminating the solution.  Second, the fourth-order accurate 

method is only second-order accurate across periodic boundaries; it is, of course, 

fourth-order accurate across processor boundaries.   To have consistent 

comparisons, all methods were therefore run on 70.0 by 20.0 grids.  Periodic 

conditions are placed on all four boundaries. 

Note that the vortex proper initially spans approximately four to five, nine, 19, 39, 

and 79 edge lengths on each successively finer grid.   

The simulations were run second-order accurate in time to a non-dimensional 

time of 100.  For best accuracy, the 1.0 and 0.5 edge length grids require three 



Newton sub-iterations and a rather small non-dimensional time-step of 0.2.  

However, the 0.25, 0.125, and 0.0625 edge length grid results are essentially 

unchanged using two Newton sub-iterations with a time-step twice as large.   To 

again ensure consistent comparisons, all simulations were therefore run with 

three Newton sub-iterations and non-dimensional time-steps of 0.2, 0.1, 0.05, 

0.025, and 0.0125 for each successively finer grid. 

To ease data post-processing, the initial vortex center in quadrilateral grids is now 

located at the centroid of the cell whose lower left vertex is (5.0,10.0).  Thus, 

(𝑥0, 𝑦0) is located at (5.5, 10.5), (5.25,10.25), and so on for each successively finer 

grid.  The vortex center in triangular grids is initially located in the cell whose 

centroid is closest to (5.0, 10.0). 

The initial cell-averaged values were again computed with p=6 Gaussian 

quadrature.  At the conclusion of each simulation, the normal post-processing 

procedures in Cobalt V9.2 were circumvented.  These post-processing procedures 

involve an inherent averaging step that adversely affects the comparisons with 

theory for this case.  Instead, the actual cell-averaged density values for the 

horizontal row of cells with centroids lying along the line 𝑦 = 𝑦0 were directly 

output. 

For brevity the results for the finest grids, those with 0.0625 edge length, are not 

presented as they show nothing new of interest. 

 

Tabulated Minimum Non-Dimensional Densities 

 

Minimum cell-averaged, non-dimensional densities, which occur at the vortex 

center, at the non-dimensional time of 100 are presented in Tables 1 and 3 below.  

Tables 2 and 4 present the data recast as percentage loss of amplitude in the 

density profile at the vortex center, defined as: 

𝐿𝑜𝑠𝑠 % ≡ (
𝜌𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑 − 𝜌𝑒𝑥𝑎𝑐𝑡

1 − 𝜌𝑒𝑥𝑎𝑐𝑡
) ∗ 100 



Note that dispersion errors may cause the vortex center to not fall in the cell with 

a centroid location of (𝑥0 + 50, 𝑦0), which is where the vortex center would 

theoretically fall at a non-dimensional time of 100. 

 

Quadrilateral Grids 

Method L=1.0 L=0.5 L=0.25 L=0.125 

Exact 0.42169789 0.36709141   0.35293415 0.34937088 

2nd-order 0.96588296 0.88149881 0.60677956 0.39529065 

3rd-order 0.90570383 0.53733345 0.35630281 0.34948736 

4th-order 0.94447051 0.80163704 0.38727349 0.34995254 

Table 1. Minimum Non-Dimensional Density on Quadrilateral Grids 

 

Method L=1.0 L=0.5 L=0.25 L=0.125 

2nd-order 94.10% 81.28% 39.23% 7.06% 

3rd-order 83.69% 26.90% 0.52% 0.018% 

4th-order 90.40% 68.66% 5.31% 0.089% 

Table 2. Amplitude Loss on Quadrilateral Grids 

 

Triangular Grids 

Method L=1.0 L=0.5 L=0.25 L=0.125 

Exact 0.38557894 0.35766603   0.35055933 0.34877614 

2nd-order 0.92895987 0.74909471 0.44832269 0.35747904 

3rd-order 0.85689929 0.40646510 0.35329233 0.34911582 

4th-order 0.93961885 0.44574567 0.35166469 0.34882751 

Table 3. Minimum Non-Dimensional Density on Triangular Grids 

 

Method L=1.0 L=0.5 L=0.25 L=0.125 

2nd-order 88.44% 60.94% 15.05% 1.34% 

3rd-order 76.71% 7.60% 0.42% 0.052% 

4th-order 90.17% 13.71% 0.17% 0.008% 

Table 4. Amplitude Loss on Triangular Grids 



 

Centerline Plots 

Figures 1 through 7, show cell-averaged, non-dimensional density profiles along 

the horizontal row of cells whose centroids lie along the line 𝑦 = 𝑦0.  Dispersion 

errors can/will cause the plotted centerline minimum density to differ from the 

tabulated minimum density. 

For brevity, centerline plots are not shown for the 0.125 edge length triangular 

grids as they show nothing that cannot be inferred from the 0.25 edge length 

triangular grid and 0.125 quadrilateral grid plots. 

 

Quadrilateral Grids 

 

Figure 1. Edge Length = 1.0 



 

 

Figure 2. Edge Length = 0.5 



 

Figure 3. Edge Length = 0.25 



 

Figure 4. Edge Length = 0.125 

 

 

 

 

 

 

 

 

 



Triangular Grids 

 

Figure 5. Edge Length = 1.0 



 

Figure 6. Edge Length = 0.5 

 

 



 

Figure 7. Edge Length = 0.25 

 

 

 

 

 

 

 

 

 



Contour Plots 

Figures 8 through 20 show contours of dimensional density for selected methods 

and grids.  The difference between successive contour lines is ~0.02 for all figures. 

For brevity, contour plots are not shown for the 0.125 edge length triangular grids 

as they show nothing that cannot be inferred from the 0.25 edge length triangular 

grid and 0.125 quadrilateral grid plots. 

 

Quadrilateral Grids 

 

Figure 8. Edge Length = 1.0, Third-Order 

 

 

Figure 9. Edge Length = 0.5, Third-Order 

 



 

Figure 10. Edge Length = 0.25, Third-Order 

  

Figure 11. Edge Length = 0.125, Third-Order 

 

 

Figure 12. Edge Length = 0.5, Second-Order 

 



 

Figure 13. Edge Length = 0.5, Third-Order 

 

 

Figure 14. Edge Length = 0.5, Fourth-Order 

 

 

 

 

 

 

 

 

 



Triangular Grids 

 

Figure 15. Edge Length =1.0, Third-Order 

 

 

Figure 16. Edge Length = 0.5, Third-Order 

 

 

Figure 17. Edge Length = 0.25, Third-Order 



 

Figure 18. Edge Length = 1.0, Fourth-Order 

 

 

Figure 19. Edge Length = 0.5, Fourth-Order 

 

 

Figure 20. Edge Length = 0.25, Fourth-Order 

 



Summary 

The desired nominal orders-of-accuracy in the reconstructions are observed. 

Diffusion and dispersion errors are quite low for the third- and fourth-order 

methods once grid resolution becomes adequate.  For overly coarse grids, the 

third- and fourth-order methods do show reduced errors compared to the 

second-order method, but their results are poor nonetheless.  The behavior of 

minimum density with grid resolution does not follow nominal orders-of-

accuracy due to the actions of the limiter.  When activated, the limiter reduces 

order-of-accuracy for numerical stability. 
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